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Chapter 9. Dynamics of Rigid Bodies 
   
(Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 
11.) 

9.1 Notes on Notation 
In this chapter, unless otherwise stated, the following notation conventions will be used: 
 

1. Einstein’s summation convention. Whenever an index appears twice (an only 
twice), then a summation over this index is implied. For example, 
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2. The index i  is reserved for Cartesian coordinates. For example, x

i
,  for i = 1,2,3 , 

represents either x, y,  or z  depending on the value of i . Similarly, p
i
 can represent 

p
x
, p

y
,  or p

z . This does not mean that any other indices cannot be used for 
Cartesian coordinates, but that the index i  will only be used for Cartesian 
coordinates. 

3. When dealing with systems containing multiple particles, the index !  will be used 
to identify quantities associated with a given particle when using Cartesian 
coordinates. For example, if we are in the presence of n  particles, the position 
vector for particle !  is given by r

!
, and its kinetic energy T

!
 by 
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Take note that, according to convention 1 above, there is an implied summation on 
the Cartesian velocity components (the index i  is used), but not on the masses 
since the index !  appears more than twice. Correspondingly, the total kinetic 
energies is written as 
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" .  (9.3) 

9.2 The Independent Coordinates of a Rigid Body 
The simplest extended-body model that can be treated is that of a rigid body, one in 
which the distances ri ! rj  between points are held fixed. A general rigid body will have 
six degrees of freedom (but not always, see below). To see how we can specify the 
position of all points in the body with only six parameters, let us first fix some point r

1
 of 

the body, thereafter treated as its “centre” or origin from which all other points in the 
body can be referenced from (r

1
 can be, but not necessarily, the centre of mass). Once the 
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coordinates of r
1
 are specified (in relation to some origin outside of the body), we have 

already used up three degrees of freedom. With r
1
 fixed, the position of some other point 

r
2
 can be specified using only two coordinates since it is constrained to move on the 

surface of a sphere centered on r
1
. We are now up to five degrees of freedom. If we now 

consider any other third point r
3
 not located on the axis joining r

1
 and r

2
, its position can 

be specified using one degree of freedom (or coordinate) for it can only rotate about the 
axis connecting r

1
 and r

2
. We thus have used up the six degrees of freedom. It is 

interesting to note that in the case of a linear rod, any point r
3
 must lay on the axis 

joining r
1
 and r

2
; hence a linear rod has only five degrees of freedom.  

Usually, the six degrees of freedom are divided in two groups: three degrees for 
translation (to specify the position of the “centre” r

1
, and three rotation angles to specify 

the orientation of the rigid body (normally taken to be the so-called Euler angles). 

9.3 The Inertia Tensor  
 Let’s consider a rigid body composed of n  particles of mass m

!
, ! = 1, ... ,n . If the body 

rotates with an angular velocity !  about some point fixed with respect to the body 
coordinates (this “body” coordinate system is what we used to refer to as “noninertial” or 
“rotating” coordinate system in Chapter 8), and if this point moves linearly with a 
velocity V  with respect to a fixed (i.e., inertial) coordinate system, then the velocity of 
the ! th  particle is given by equation (8.16) of derived in Chapter 8 
 
 v

!
= V +" # r

!
,  (9.4) 

 
where we omitted the term  
 

 v! ,r "
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dt

#
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rotating

= 0,  (9.5) 

 
since we are dealing with a rigid body. We have also dropped the f  subscript, denoting 
the fixed coordinate system, as it is understood that all the non-vanishing velocities will 
be measured in this system; again, we are dealing with a rigid body. 

The total kinetic energy of the body is given by 
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 (9.6) 
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Although this is an equation for the total kinetic energy is perfectly general, considerable 
simplification will result if we choose the origin of the body coordinate system to 
coincide with the centre of mass. With this choice, the second term on the right hand side 
of the last of equations (9.6) can be seen to vanish from 
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% = V " # $ m!r!

!
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,
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.

/

0
1 = 0,  (9.7) 

 
since the centre of mass R of the body, of mass M , is defined such that  
 
 m!r!

!

" = 0.  (9.8) 

 
The total kinetic energy can then be broken into two components: one for the 
translational kinetic energy and another for the rotational kinetic energy. That is, 
 
 T = T

trans
+ T

rot
,  (9.9) 

 
with 
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 (9.10) 

 
The expression for T

rot
 can be further modified, but to do so we will now resort to tensor 

(or index) notation. So, let’s consider the following vector equation 
 
 ! " r

#( )
2

= ! " r
#( ) $ ! " r

#( ),  (9.11) 
  
and rewrite it using the Levi-Civita and the Kronecker tensors 
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 (9.12) 

 
Inserting this result in the equation for T

rot
 in equation (9.10) we get 
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Alternatively, keeping with the tensor notation we have 
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We now define the components Iij  of the so-called inertia tensor I{ }  by 
 
 Iij = m! " ij x! ,k x! ,k # x! ,i x! , j$% &'

!

(  (9.15) 

 
and the rotational kinetic energy becomes 
 

 T
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=
1

2
I
ij
!

i
!

j  (9.16) 

 
or in vector notation 
 

 T
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1

2
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For our purposes it will be usually sufficient to treat the inertia tensor as a regular 3! 3  
matrix. Indeed, we can explicitly write I{ }  using equation (9.15) as 
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It is easy to see from either equation (9.15) or equation (9.18) that the inertia tensor is 
symmetric, that is, 
 
 I

ij
= I

ji
.  (9.19) 

 
The diagonal elements I

11
, I

22
,  and I

33
 are called the moments of inertia about the 

x
1
-, x

2
-, and x

3
-axes , respectively. The negatives of the off-diagonal elements are the 
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products of inertia. Finally, in most cases the rigid body is continuous and not made up 
of discrete particles as was assumed so far, but the results are easily generalized by 
replacing the summation by a corresponding integral in the expression for the 
components of the inertia tensor 
 
 Iij = ! r( ) " ij xk xk # xix j( )

V$ dx
1
dx

2
dx

3
,  (9.20) 

 
where ! r( )  is the mass density at the position r , and the integral is to be performed over 
the whole volume V  of the rigid body. 
 
Example 
 
Calculate the inertia tensor for a homogeneous cube of density ! , mass M , and side 
length b . Let one corner be at the origin, and three adjacent edges lie along the 
coordinate axes (see Figure 9-1). 
Solution. 
We use equation (9.20) to calculate the components of the inertia tensor. Because of the 
symmetry of the problem, it is easy to see that the three moments of inertia 
I

11
, I

22
,  and I

33
 are equal and that same holds for all of the products of inertia. So, 
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 (9.21) 

 

 
Figure 9-1 – A homogeneous cube of sides b  with the origin at one corner. 
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And for the negative of the products of inertia 
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 (9.22) 

 
It should be noted that in this example the origin of the coordinate system is not located 
at the centre of mass of the cube. 

9.4 Angular Momentum 
Going back to the case of a rigid body composed of a discrete number of particles; we 
can calculate the angular momentum with respect to some point O  fixed in the body 
coordinate system with 
 
 L = r! " p!

!

# .  (9.23) 

 
Relative to the body coordinate system the linear momentum of the ! th  particle is 
 
 p

!
= m

!
v
!
= m

!
" # r

!
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and the total angular momentum becomes 
 
 L = m

!
r
!
" # " r

!( )
!

$ .  (9.25) 

 
Resorting one more time to tensor notation we can calculate r

!
" # " r

!( )  as 
 

 

!ijk x" , j!klm# l x" ,m = !kij!klmx" , j# l x" ,m

= $ il$ jm % $ im$ jl( )x" , j# l x" ,m

= x
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or alternatively in vector notation 
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!
" # " r
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2
# $ r

!
r
!
%#( ).  (9.27) 

 
Then, the total angular momentum is given by 
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 L = m! r!
2" # r! r! $"( )%& '(

!

)  (9.28) 

 
Using the tensor notation the component of the angular momentum is 
 

 
Li = m! x! ,k x! ,k" i # x! , j" j x! ,i( )

!

$

=" j m! % ij x! ,k x! ,k # x! , j x! ,i( )
!

$ ,
 (9.29) 

 
and upon using equation (9.15) for the inertia tensor 
 
 L

i
= I

ij
!

j
 (9.30) 

 
or in tensor notation 
 
 L = I{ } ! "  (9.31) 
 
Finally, we can insert equation (9.31) for the angular momentum vector into equation 
(9.17) for the rotational kinetic energy to obtain 
 

 T
rot
=
1

2
L ! "  (9.32) 

 

  

Figure 9-2 – A dumbbell connected by masses m
1
 and m

2
 at the ends of its shaft. Note 

that the angular velocity !  is not directed along the shaft. 
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Example 
 
The dumbbell. A dumbbell is connected by two masses m

1
 and m

2
 located at distances 

r
1
 and r

2
from the middle of the shaft, respectively. The shaft makes an angle !  with a 

vertical axis, to which it is attached at its middle (i.e., the middle of the shaft). Calculate 
the equation of angular motion if the system is forced to rotate about the vertical axis 
with a constant angular velocity !  (see Figure 9-2). 
 
Solution. We define the inertial and the body coordinate systems such that their 
respective origins are both connected at the point of junction between the vertical axis 
and the shaft of the dumbbell. We further define the body coordinate system as having its 
x
3
-axis  orientated along the shaft and its x

1
-axis  perpendicular to the shaft but located in 

the plane defined by the axis of rotation and the shaft. The remaining x
2
-axis  is 

perpendicular to this plane and completes the coordinate system attached to the rigid 
body. For the inertial system, we chose the x

3
! -axis  to be the vertical, and the other two 

axes such that the basis vectors can expressed as  
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3
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1
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3
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 (9.33) 

 
From equation (9.15), we can evaluate the components of the inertia tensor. We can in 
the first time identify the components that are zero (because x

1,1
= x

1,2
= x

2,1
= x

2,2
= 0 ) 
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The only two remaining components are 
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The components of the angular velocity in the coordinate of the rigid body are 
 

 
!
1
=! sin "( )

!
2
= 0

!
3
=! cos "( ).

 (9.36) 

 
Inserting equations (9.35) and (9.36) in equation (9.30) we find for the L

1
 component 
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1
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!

i
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!
1
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r
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2
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2
r
2

2( ),  (9.37) 
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and for the L

2
 and L

3
 

 

 
L
2
= I

2i
!

i
= I

22
!
2
= 0

L
3
= I

3i
!

i
= I

33
!
3
= 0.

 (9.38) 

 
If should be noted from equations (9.36) and (9.37) that the angular velocity and the 
angular momentum do not point in the same direction. To calculate the equations of 
motion, we express the angular momentum with the inertial coordinates instead of the 
coordinates of the rigid body system. From equation (9.37) we can write 
 
 L =! sin "( ) m1

r
1

2
+ m

2
r
2

2( )e1 = I11! sin "( )e1,  (9.39) 
 
but we can transform the basis vector e

1
 using equation (9.33) (or its inverse) 

 
 L = I

11
! sin "( ) cos "( )cos !t( ) #e

1
+ cos "( )sin !t( ) #e

2
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3
$% &'.  (9.40) 

 
We also know that 
 

 
dL

dt
= N,  (9.41) 

 
where N  is the torque. Assuming that the angular speed is constant, we find 
 

 

N
1
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"
2
sin #( )cos #( )sin "t( )

N
2
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"
2
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N
3
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 (9.42) 

 
An interesting consequence of the fact that the angular momentum and angular velocity 
vectors are not aligned with each other is that we need to apply a torque to the dumbbell 
to keep it rotating at a constant angular velocity. 

9.5 The Principal Axes of Inertia 
We now set on finding a set of body axes that will render the inertia tensor diagonal in 
form. That is, given equation (9.18) for I{ } , we want to make a change in the body basis 
vectors (i.e., a change of variables) that will change the form of the inertia tensor to 
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I
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0 0

0 I
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0

0 0 I
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'
#
. (9.43) 
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We will then require that all the products of inertia be zero. Carrying this program will 
provide a significant simplification for the expressions of the angular momentum and the 
kinetic energy, as measured in the inertial reference frame. That is, these two quantities 
will be given by 
 
 L

1
= I

1
!
1
, L

2
= I

2
!
2
, L

2
= I

3
!
3
,  (9.44) 

 
and 
 

 T
rot
=
1

2
I
1
!
1

2
+ I

2
!
2

2
+ I

3
!
3

2( ).  (9.45) 

 
The set of axes that allow this transformation is called the principal axes of inertia. 
When the equations for the components of the angular momentum can be expressed as in 
equation (9.43), then L,  and !  are directed along the same axis. 

The problem of finding the principal axes is mathematically equivalent to solving a set of 
linear equations. More precisely, we have from equation (9.31) that 
 
 L = I{ } ! ",  (9.46) 
 
but we are actually looking for a way to reduce this equation to the following form 
 
 L = I{ } !" = I".  (9.47) 
 
Mathematically speaking, I , which is called a principal moment of inertia, is an 
eigenvalue of the inertia tensor, and ! , which will give us the corresponding principal 
axis of inertia, is an eigenvector. The system of equations (9.47) can be written as 
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 (9.48) 

  
or, after some rearranging 
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 (9.49) 

 
The mathematical condition necessary for this set of equation to have a nontrivial 
solution is that the determinant of the coefficient vanishes 
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I
11
! I( ) + I12 + I13

I
21
+ I

22
! I( ) + I23

I
31
+ I

32
+ I

33
! I( )

= 0.  (9.50) 

 
The expansion of this determinant leads to the so-called secular or characteristic 
equation for the eigenvalues I (i.e., I

1
, I

2
, and I

3
 in equation (9.44)); it is a third order 

polynomial. Once the characteristic equation has been solved, the principal axes can be 
determined by inserting the eigenvalues back in equation (9.49) and evaluating the ratios 
of the angular velocity components (!

1
:!

2
:!

3
), therefore, determining the 

corresponding eigenvectors.  

It is important to realize that in many cases, the rigid body under study will exhibit some 
symmetry that will allow one to guess what the principal axes are. For example, a 
cylinder will have one of its principal axes directed along the centre axis of the cylinder. 
The two remaining axes will be directed at right angle to this axis (and to each other). 

Finally, here are a few definitions: a body that has i) I
1
= I

2
= I

3
 is called a spherical 

top, ii) I
1
= I

2
! I

3
 is a symmetric top, iii) I

1
! I

2
! I

3
 is an asymmetric top, and 

finally, if I
1
= 0, I

2
= I

3
 the body is a rotor. 

 
Example 
 
Find the principal moment of inertia and the principal axes of inertia for the cube of 
Figure 9-1. 
 
Solution. 
In the previous example solved on page 163, we found that the products of inertia did not 
equal zero. Obviously, the axes chosen were not the principal axes. To find the principal 
moments of inertia, we must solve the characteristic equation 
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= 0,  (9.51) 

 
where ! " Mb2 . Before trying to evaluate the determinant from equation (9.51), it is 
always good to see if we can bring it to a simpler form with a subtraction of a column or 
a row to another column or row. This is permitted since the determinant is not affected by 
such operations. In our case, we see that, for example, the third element of the first two 
rows is the same; we will therefore subtract the second row to the first. The determinant 
then becomes 
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which implies that 
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Expanding this equation gives 
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 (9.54) 

 
The square-bracketed part of the last expression is a second order polynomial in 
2! 3" I( ) . If we solve for the roots of this polynomial we get 
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 (9.55) 

 
The last of equation (9.54) can now be factored as 
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and the three principal moments of inertia are 
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1
=
1

6
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3
=
11

12
!. (9.57) 
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To find the direction of the principal axis of inertia, we insert the eigenvalues of equation 
(9.57) into equation (9.49). For I

1
, we have (after some manipulation) 

 

 
2!

1
"!

2
"!

3
= 0

"!
1
+ 2!

2
"!

3
= 0,

 (9.58) 

 
which implies that !

1
=!

2
=!

3
  and the corresponding eigenvector is directed along 

e
1
+ e

2
+ e

3
. For I

2
 and I

3
, because they are equal, the orientation of their corresponding 

principal axes is arbitrary; they need only to lie in a plane perpendicular to the main 
principal axis determined for I

1
. 

9.6 Similarity Transformations 
The diagonalization of the inertia tensor (or any other matrix for that matter) discussed in 
the previous section can sometimes be achieved in a different manner. For example, in 
the case of the cube discussed in the last example, because of the symmetry of the 
problem we could have guessed what the principal axes were. When this can be done, it 
is then straightforward (if sometimes tedious) to determine the transformation (rotation) 
matrix that brings us from the initial set of coordinate axes to the principal axes, and use 
it to render the inertia tensor diagonal. In a way, this technique follows a path that is 
reversed from what was done in the previous section. That is, instead of, first, rendering 
the inertia tensor diagonal and then, determining the principal axes (i.e., the 
eigenvectors), we now guess the orientation of the principal axes and then diagonalize the 
inertia tensor. 
So, let’s consider the angular momentum  
 
 L = I{ } ! ",  (9.59) 
 
in the initial set of coordinate axes, which we now transform to a new set of axes. We 
will have a new equation for the angular momentum as measured in this new system; we 
define the angular momentum with an equation similar to equation (9.59) 
 
 !L = !I{ } " !# .  (9.60) 
 
If we denote the transformation matrix that links the two coordinate systems by !  such 
that 
 
 !L = "L,  (9.61) 
 
and  
 
 !" = #".  (9.62) 
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We have relations similar to equations (9.61) and (9.62) for any corresponding vectors 
between the two systems of coordinates. For example, the position vectors are related 
through 
 
 !r = "r.  (9.63) 
 
Combining equations (9.60) to (9.62) we can write 
 
 !L = "L = !I{ } # !$ = !I{ } # "$( ),  (9.64) 
 
or 
 
 L = !

"1
#I{ }!( ) $ %.  (9.65) 

 
Comparison with equation (9.59) reveals that 
 
 !I{ } = " I{ }"#1  (9.66) 
 
A transformation of this type is called a similarity transformation. In instances where 
we deal with orthogonal transformations (which will often be our case), we have 
!

"1
= !

T , with !T  the transpose of ! , and  
 
 !I{ } = " I{ }"T

.  (9.67) 
 
Finally, if the transformation matrix is such that it takes the initial coordinate axes into 
the principal axes, then, the transformed inertia tensor will be diagonal. 
 
Example 
 
Use the results of the preceding example of the cube (equations (9.58) and the following 
paragraph) to render its inertia tensor (using equations (9.21) and (9.22)) diagonal. 
 
Solution. 
From equations (9.21) and (9.22), and the corresponding set of coordinate axes defined in 
Figure 9-1, we can write the inertia tensor of the cube as  
 

 I{ } =

2

3
! "

1

4
! "

1

4
!

"
1

4
!

2

3
! "

1

4
!

"
1

4
! "

1

4
!

2

3
!

#

$

%
%
%

&

%
%
%

'

(

%
%
%

)

%
%
%

,  (9.68) 
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where ! " Mb2 . If the three initial basis vectors are denoted by e
1
, e

2
, and e

3
, we know 

from previous results that the main principal axis can be chosen to be 
 

 !e
1
=
1

3
e
1
+ e

2
+ e

3( ). (9.69) 

 
This is equivalent to bringing the x

1
-axis  along the main diagonal of the cube with a 45°  

rotation. More precisely, to achieve this we first make rotation a !
1
 of 45° about the 

x
3
-axis , and a second rotation !

2
 of 

 
! tan

!1
1 2( ) ! !35°  about the new x

2
! -axis  

resulting from the initial rotation. The two remaining vectors necessary to complete the 
new basis are then 
 

 
!e
2
=
1

2
"e

1
+ e

2( )

!e
3
=
1

6
"e

1
" e

2
+ 2e

3( ),
 (9.70) 

 
and are seen to satisfy the following (required) relations 
 
 !e

1
" !e

2
= !e

2
" !e

3
= !e

2
" !e

3
= 0.  (9.71) 

 
From equations (9.69) and (9.70), the total transformation matrix can be written as 
 

 ! =
1

3

1 1 1

"
3

2

3

2
0

"
1

2
"
1

2
2

#

$

%
%
%
%
%
%
%

&

'

(
(
(
(
(
(
(

.  (9.72) 

 
It can be verified that ! = !

2
!
1
 with  

 

 !
1
=

1

2

1

2
0

"
1

2

1

2
0

0 0 1

#

$

%
%
%
%
%
%
%

&

'

(
(
(
(
(
(
(

, !
2
=

2

3
0

1

3

0 1 0

"
1

3
0

2

3

#

$

%
%
%
%
%
%

&

'

(
(
(
(
(
(

.  (9.73) 

 
 Using equation (9.67) with equations (9.68) and (9.72), we find 
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=

=
"
3

1 1 1

#
3

2

3

2
0

#
1

2
#
1

2
2

$

%

&
&
&
&
&
&
&

'

(

)
)
)
)
)
)
)

.

2

3
#
1

4
#
1

4

#
1

4

2

3
#
1

4

#
1

4
#
1

4

2

3

*

+

,
,
,

-

,
,
,

.

/

,
,
,

0

,
,
,

1 #
3

2
#
1

2

1
3

2
#
1

2

1 0 2

$

%

&
&
&
&
&
&
&
&

'

(

)
)
)
)
)
)
)
)

=
"
3

1 1 1

#
3

2

3

2
0

#
1

2
#
1

2
2

$

%

&
&
&
&
&
&
&

'

(

)
)
)
)
)
)
)

1

6
#
11

12

3

2
#
11

12

1

2

1

6

11

12

3

2
#
11

12

1

2

1

6
0

22

12

1

2

*

+

,
,
,,

-

,
,
,
,

.

/

,
,
,,

0

,
,
,
,

=
"
3

1

2
0 0

0
33

12
0

0 0
33

12

*

+

,
,
,

-

,
,
,

.

/

,
,
,

0

,
,
,

=

1

6
" 0 0

0
11

12
" 0

0 0
11

12
"

*

+

,
,
,

-

,
,
,

.

/

,
,
,

0

,
,
,

,

 (9.74) 

 
this is the same result as was obtained in equation (9.57). 

9.7 Moments Inertia for Different Body Coordinate Systems 
We consider two sets of coordinate axes that are oriented in the same direction, but have 
different origins. The x

i
-axes  have their origin O  located at the centre of mass of the 

rigid body, and the X
i
-axes  have their origin Q  located somewhere else inside, or 

outside, of the body (see Figure 9-3). 

The elements of the inertia tensor J{ }  relative to the X
i
-axes  are 

 
 Jij = m! " ij X! ,k X! ,k # X! ,i X! , j( )

!

$ .  (9.75) 

 
If the vector a  connects the origin Q  to the centre of mass (and origin) O , then the 
general vector R  for the position of a point within the rigid body is written as 
R

!
= a + r

!
, or using components 

 
 X

! ,i
= a

i
+ x

! ,i
.  (9.76) 
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Figure 9-3 – The X
i
-axes  are fixed in the rigid body and have the same orientation as the 

x
i
-axes , but its origin Q  is not located at the same point O , which is the centre of mass 

of the body.   
Inserting equation (9.76) into equation (9.75) we get 
 

 

Jij = m! " ij ak + x! ,k( ) ak + x! ,k( ) # ai + x! ,i( ) aj + x! , j( )$
%

&
'

!

(

= m! " ij x! ,k x! ,k # x! ,i x! , j( )
!

(

+ m! " ij 2x! ,kak + akak( ) # aix! , j + ajx! ,i + aiaj( )$
%

&
'

!

(

= Iij + m! " ijakak # aiaj( )
!

( + m! " ij2x! ,kak # aix! , j # ajx! ,i( ).
!

(

 (9.77) 

 
But from the definition of the centre of mass itself, the last term on the right hand side of 
the last of equations (9.77) equals zero since 
 
 m! x! ,i

!

" = 0.  (9.78) 

 
We then find the final result that 
 
 J

ij
= I

ij
+ M !

ij
a
2
" a

i
a
j( )  (9.79) 

 
with M = m!

!

"  and a
2
= a

k
a
k

. 

We see from equation (9.79) that the inertia tensor components are minimum when 
measured relative to the centre of mass. 
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Example 
 
Find the inertia tensor of a homogeneous cube of side b  relative to its centre of mass. 
 
Solution. 
We previously found that the components of the inertia tensor of such a cube relative to 
one of its corner are given by 
 

 J
11
=
2

3
!, J

12
= "

1

4
!,  (9.80) 

 
for the moments and the (negative of) the products of inertia, respectively. Since the 
centre of mass of the cube is located at a

1
= a

2
= a

3
= b 2  relative to a corner, we can use 

equation (9.79) to calculate the components Iij  of the inertia tensor relative to the centre 
of mass 
 

 

I
11
= J

11
! M

3

4
b
2 !

b
2

4

"
#$

%
&'

=
2

3
( !

1

2
(

=
1

6
(,

 (9.81) 

 
and 
 

 I
12
= J

12
+ M

b
2

4
= 0.  (9.82) 

 
The inertia tensor I{ }  is, therefore, seen to be diagonal and proportional to the unit tensor 
1{ }  with 

 

 I{ } =
1

6
Mb

2
1{ }.  (9.83) 

9.8 The Euler Angles 
We stated in section 9.2 that of the six degrees of freedom of a rigid body, three are 
rotational in nature (the other three are for the translation motion of the centre of mass). 
In this section, we set to determine the set of angles that can be used to specify the 
rotation of a rigid body. 

We know that the transformation from one coordinate system to another can be 
represented by a matrix equation such as 
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 x = ! "x . (9.84) 
 
If we identify the inertial (or fixed) system with !x  and the rigid body coordinate system 
with x , then the rotation matrix !  describes the relative orientation of the body in 
relation to the fixed system. Since there are three rotational degrees of freedom, !  is 
actually a product from three individual rotation matrices; one for each independent 
angles. Although there are many possible choices for the selection of these angles, we 
will use the so-called Euler angles !, ", and # . 

The Euler angles are generated in the following series of rotation that takes the fixed !x  
system to the rigid body x  system (see Figure 9-4). 

1. The first rotation is counterclockwise through an angle !  about the !x
3
-axis . It 

transforms the inertial system into an intermediate set of !!x
i
 -axes . The 

transformation matrix is 
 

 !" =

cos "( ) sin "( ) 0

# sin "( ) cos "( ) 0

0 0 1

$

%

&
&&

'

(

)
))
,  (9.85) 

 
with 0 ! " ! 2# , and 
 
 !!x = "# !x .  (9.86) 
 

Figure 9-4 – The Euler angles are used to rotate the fixed !x  system to the rigid body x  
system. (a) The first rotation is counterclockwise through an angle !  about the !x

3
-axis . 

(b) The second rotation is counterclockwise through an angle !  about the !!x
1
-axis . (c) 

The third rotation is counterclockwise through an angle !  about the !!!x
3
 -axis . 
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2. The second rotation is counterclockwise through an angle !  about the !!x
1
 -axis  

(also called the line of nodes). It transforms the inertial system into an intermediate 
set of !!!x

i
 -axes . The transformation matrix is 

 

 !" =

1 0 0

0 cos "( ) sin "( )

0 # sin "( ) cos "( )

$

%

&
&&

'

(

)
))
,  (9.87) 

 
with 0 !" ! # , and 
 
 !!!x = "

#
!!x .  (9.88) 

 
3. The third rotation is counterclockwise through an angle !  about the !!!x

3
 -axis . It 

transforms the inertial system into the final set rigid body x
i
-axes . The 

transformation matrix is 
 

 !" =

cos "( ) sin "( ) 0

# sin "( ) cos "( ) 0

0 0 1

$

%

&
&&

'

(

)
))
,  (9.89) 

 
with 0 !" ! 2# , and 
 
 x = !" ###x .  (9.90) 
 
Combining the three rotations using equations (9.86), (9.88), and (9.90) we find that the 
complete transformation is given by 
 
 x = !"!#!$ %x ,  (9.91) 
 
and the rotation matrix is 
 
 ! = !"!#!$ .  (9.92) 
 
Upon calculating this matrix, we find that its components are  
 



179 

 

!
11
= cos "( )cos #( ) $ cos %( )sin #( )sin "( )

!
21
= $ sin "( )cos #( ) $ cos %( )sin #( )cos "( )

!
31
= sin %( )sin #( )

!
12
= cos "( )sin #( ) + cos %( )cos #( )sin "( )

!
22
= $ sin "( )sin #( ) + cos %( )cos #( )cos "( )

!
32
= $ sin %( )cos #( )

!
13
= sin "( )sin %( )

!
23
= cos "( )sin %( )

!
33
= cos %( ).

 (9.93) 

 
with 0 ! " ! 2# , 0 !$ ! # , and 0 !% ! 2# . 

Correspondingly, the rate of change with time (i.e., the angular speed) associated with 
each of the three Euler angles are defined as 

 
!!, !",  and !# . The vectors associated with 

 
!!, !",  and !#  can be written as 

 

 

 

!! = !! "e
3

!# = !# ""e
1

!$ = !$ """e
3
= !$ e

3
.

 (9.94) 

 
Taking the projections of the unit bases vectors appearing in equation (9.94) on the rigid 
body bases vectors, we find 
 

 

 

!! = !! sin "( )sin #( )e1 + sin "( )cos #( )e2 + cos "( )e
3

$% &'
!" = !" cos #( )e1 ( sin #( )e2$% &'
!# = !# e

3
.

 (9.95) 

 
Combining the three equations (9.95), we can express the components of the total angular 
velocity vector !  as a function of 

 
!!, !",  and !#  

 

 

 

!
1
= !" sin #( )sin $( ) + !# cos $( )

!
2
= !" sin #( )cos $( ) % !# sin $( )

!
3
= !" cos #( ) + !$

 (9.96) 
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9.9 Euler’s Equations 
To obtain the equations of motion of a rigid body, we can always start with the 
fundamental equation (see the dumbbell example on page 165) 
 

 dL

dt

!
"#

$
%&
fixed

= N,  (9.97) 

 
where N  is the torque, and designation “fixed” is used since  this equation can only 
applied in an inertial frame of reference. We also know from our study of noninertial 
frames of reference in Chapter 10 that 
 

 dL

dt

!
"#

$
%&
fixed

=
dL

dt

!
"#

$
%&
body

+' ( L,  (9.98) 

 
or  
 

 dL

dt

!
"#

$
%&
body

+' ( L = N.  (9.99) 

 
Using tensor notation we can write the components of equation (9.99) as 
 
 

 

!Li + !ijk" j Lk = Ni .  (9.100) 
 
Now, if we chose the coordinate axes for the body frame of reference to coincide with the 
principal axes of the rigid body, then we have from equations (9.44) 
 
 L

1
= I

1
!
1
, L

2
= I

2
!
2
, L

3
= I

3
!
3
.  (9.101) 

 
Since the principal moments of inertia I

1
, I

2
,  and I

3
 are constant with time, we can 

combine equations (9.100) and (9.101) to get 
 

 

 

I
1
!!
1
" I

2
" I

3( )!2
!
3
= N

1

I
2
!!
2
" I

3
" I

1( )! 3
!
1
= N

2

I
3
!!
3
" I

1
" I

2( )!1
!
2
= N

3
.

 (9.102) 

 
Alternatively, we can combine these three equations into one using indices 
 
 

 

Ii ! I j( )" i" j ! #ijk Ik !" k ! Nk( ) = 0
k

$  (9.103) 
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where no summation is implied on the i and j  indices. Equations (9.103) are the so-called 
Euler equations of motion for a rigid body. 
 
Examples 
 
1. The dumbbell. We return to problem of the rotating dumbbell that we solved earlier 
(see page 165). Referring to equation (9.39) we found that the angular momentum was 
given by (using the rigid body coordinate system) 
 
 L =! sin "( ) m1

r
1

2
+ m

2
r
2

2( )e1,  (9.104) 
 
with the principal moments of inertia from the system given by 
 

 
I
1
= I

2
= m

1
r
1

2
+ m

2
r
2

2

I
3
= 0,

 (9.105) 

 
and the angular velocity components by 
 

 
!
1
=! sin "( )

!
2
= 0

!
3
=! cos "( ).

 (9.106) 

 
Since the system of axes chosen correspond to the principal axes of the dumbbell, then 
we can apply Euler’s equations of motion (i.e., equations (9.102)). With the constraint 
that  !! = 0 , we find 
 

 

N
1
= 0

N
2
= I

1
!
3
!
1
= m

1
r
1

2
+ m

2
r
2

2( )! 2
sin "( )cos "( )

N
3
= 0,

 (9.107) 

 
or 
 
 N = m

1
r
1

2
+ m

2
r
2

2( )! 2
sin "( )cos "( )e

2
.  (9.108) 

 
Upon using equations (9.33) we can rewrite the torque in the inertial coordinate system 
(that shares a common origin with the body system) as 
 
 N = m

1
r
1

2
+ m

2
r
2

2( )! 2
sin "( )cos "( ) # sin !t( ) $e

1
+ cos !t( ) $e

2
%& '(.  (9.109) 

 
This is the same result as what was obtained with equations (9.42) without resorting to 
Euler’s equation. 
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2. Force-free motion of a symmetric top.  
We consider a symmetric top, whose principal moments of inertia are I

1
= I

2
! I

3
, when 

no forces or torques are acting on it. In this case, the Euler’s equations of motion are 
 

 

 

I
1
! I

3( )"2
"
3
! I

1
!"
1
= 0

I
3
! I

1( )" 3
"
1
! I

1
!"
2
= 0

I
3
!"
3
= 0,

 (9.110) 

 
where I1  (as opposed to I2 )  was used throughout. Because there are no forces involved, 
the top will be either at rest or in uniform motion with respect to the inertial frame of 
reference. We will assume the top to be at rest, and located at the origin of the inertial 
coordinate axes. We want to find equations for the time evolution of the components of 
the angular velocity vector ! . 

From the third of equations (9.110) we find that 
 
!!
3
= 0 , or 

 
 !

3
t( ) = cste.  (9.111) 

 
The equations for the other two components of the angular velocity yield 
 

 
 

!!
1
+"!

2
= 0

!!
2
# "!

1
= 0,

 (9.112) 

 
with 
 

 ! =
I
3
" I

1

I
1

#

$%
&

'(
)
3
.  (9.113) 

 
Equations (9.112) form a system of coupled first order differential equations that can be 
solved in a similar fashion as was done for the problem of the Foucault pendulum in the 
previous chapter (see page 156). So, we multiply the second equation by i  and add it to 
the first to get 
 
 

 
!! " i#! = 0,  (9.114) 

 
with ! ="

1
+ i"

2
. The solution to equation (9.114) is of the form 

 
 ! t( ) = Aei"t ,  (9.115) 
 
or, alternatively, 
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!
1
t( ) = Acos "t( )

!
2
t( ) = Asin "t( ).

 (9.116) 

 
Since !

3
 is a constant, we find that the speed of rotation is also a constant. That is, 

 
 !

2
=!

1

2
+!

2

2
+!

3

2
= A

2
+!

3

2
= cste.  (9.117) 

 
Because equations (9.116) are that of a circle, we find that the angular velocity vector !  
precesses about the top’s axis of symmetry with a constant angular frequency ! . To an 
observer attached to the rigid body coordinate system, !  traces a cone around the 
x
3
-axis , called the body cone. Also, since the top is not subjected to any forces or 

torques, the angular momentum L  and the energy (which in this case reduces to the 
kinetic energy of rotation T

rot
) are conserved. Therefore, 

 

 T
rot
=
1

2
L !" = cste,  (9.118) 

 
with 
 

 dL

dt

!
"#

$
%&
fixed

= 0. (9.119) 

 
Equations (9.118) and (9.119) imply that the angular velocity vector !  makes a constant 
angle with the (also constant) angular momentum vector L . Therefore, not only does !  
precesses about the body x

3
-axis , but it also precesses the axis that specifies the direction 

of L . The angular velocity vector !  traces a cone around the L-axis , called the space 
cone. 

 
Figure 9-5 – The relative orientation of L, !, and the x

3
-axis  that result from the force-

free motion of a symmetric top. We let L  to lie along the !x
3
-axis  in the fixed coordinate 

system and I
1
> I

3
. We can imagine the body cone rolling around the space cone. 
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We can find out the relative orientation of L, !, and the x

3
-axis  by calculating the 

following double product 
 

 
L ! " # e

3( ) = Li$ijk" j%3k

= $
3ij Li" j = L1"2

& L
2
"
1

= I
1
"
1
"
2
& I

2
"
2
"
1
= 0,

 (9.120) 

 
since I

1
= I

2
 for a symmetric top. We therefore have that L, !, and the x

3
-axis  all lie on 

the same plane. An example of this is shown in Figure 9-5 for the case where we let L  to 
lie along the !x

3
-axis  in the fixed coordinate system and I

1
> I

3
. 

Finally, we can calculate the rate at which the rigid body will precess (about the !x
3
-axis ) 

in the inertial system. We know from the definition of the Euler angles that the rotation 
rate about the !x

3
-axis  is given by 

 
!! . Furthermore, the second Euler angle !  is that made 

between the !x3
 (or L) and the x

3
 axes, with  

!! = 0  since this angle is constant. Then, 
using the first two of equations (9.96) we have 
 
 

 
!
1

2
+!

2

2
= !" 2 sin2 #( ).  (9.121) 

 
If we define the components of the angular velocity vector !  as a function of the angle 
!  it makes to the x

3
-axis , we have 

 

 
!
1

2
+!

2

2
=! sin "( )

!
3
=! cos "( ).

 (9.122) 

 
Since I

1
= I

2
 we can also express the components of the angular momentum as 

 
  

 
L
1

2
+ L

2

2
= I

1
! sin "( )

L
3
= I

3
! cos "( ),

 (9.123) 

 
or, alternatively, 
 

 
L
1

2
+ L

2

2
= L sin !( )

L
3
= L cos !( ).

 (9.124) 

 
Combining equations (9.121) to (9.124) we find that  
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!! =
" sin #( )

sin $( )
=
L

I
1

.  (9.125) 

 

9.10 The Tennis Racket Theorem 
The so-called tennis racket theorem is concerned with the stability of the rotational 
motion of a rigid body about its principal axis. We want to find out if, when a small 
perturbation is applied to the body, the motion either returns to its initial state or perform 
small oscillations about it (i.e., if it does not do this, then it is unstable). 

We consider a general rigid body with principal moments of inertia such that I
3
> I

2
> I

1
. 

We assume that the body coordinate axes are aligned with its principal axes, and first 
consider an initial rotation about the x

1
-axis , and then apply small perturbations about the 

other two axes such that the angular velocity vector becomes  
 
 ! =!

1
e
1
+ "e

2
+ µe

3
,  (9.126) 

 
with 

 
! !"

1
 and µ !"

1
. Using equations (9.102) we can write the equations of motion 

for the system 
 

 

 

I
2
! I

3( )"µ ! I
1
!#
1
= 0

I
3
! I

1( )µ#1
! I

2

!" = 0

I
1
! I

2( )#1
" ! I

3
!µ = 0.

 (9.127) 

 
If we will only keep terms of no higher than first order in !  and µ , the first of equations 
(9.127) imply that  
 
 !

1
= cste,  (9.128) 

while the other two can be rewritten as 
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where the quantities in parentheses are constant. Taking the time derivative of the first of 
equations (9.129) and inserting the second in it we get 
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The solution to this second order differential equation is of the following form 
 
 ! t( ) = Aei"1t + Be# i"1t ,  (9.131) 
 
with  
 

 !
1
="

1

I
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# I
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.  (9.132) 

 
Since I

1
< I

3
 and I

1
< I

2
, !

1
 is real and the motion resulting from the perturbation is a 

bounded oscillation. Furthermore, upon inserting the result in equations (9.129) we find a 
similar result for µ t( ) . The rotation motion about the x

1
-axis  is therefore stable. 

If we study next rotations about the x
2
 and x

3
-axis , we obtain similar results and identify 

the frequency of oscillations, stemming form the perturbations, by permutation of the 
indices in equation (9.132). That is, 
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 (9.133) 

 
But because I

3
> I

2
> I

1
, we find that !

3
is also real, while !

2
 is imaginary. Just as the 

motion about the x
1
-axis  was found to be stable, so is the motion about the x

3
-axis . On 

the other hand, because !
2
 is imaginary a perturbation will increase exponentially with 

time when the initial rotation is about the intermediate x
2
-axis . Motion about this axis is 

thus unstable. We can readily test this result by spinning a rigid body (like a tennis 
racket!) about each of its principal axis. 


